Поиск в словарях
Искать во всех

Медицинская энциклопедия - окисление биологическое

Окисление биологическое

окисление биологическое

Окисление биологическое (клеточное или тканевое дыхание) — окислительно-восстановительные реакции, протекающие в клетках организма, в результате которых сложные органические вещества окисляются при участии специфических ферментов кислородом, доставляемым кровью. Конечными продуктами биологического окисления являются вода и двуокись углерода. Освобождающаяся в процессе биологического окисления энергия частично выделяется в виде тепла, основная же ее часть идет на образование молекул сложных фосфорорганических соединений (главным образом аденозинтрифосфата — АТФ), которые являются источниками энергии, необходимой для  жизнедеятельности организма.

При этом процесс окисления состоит в отнятии от окисляемого вещества (субстрата) электронов и равного им числа протонов. Субстратами биологического окисления являются продукты превращений жиров, белков и углеводов. Биологическое окисление субстратов до конечных продуктов осуществляется цепью последовательных реакций, в число промежуточных продуктов которых входят трикарбоновые кислоты — лимонная, цисаконитовая и изолимонная кислоты, поэтому вся цепь реакций носит название цикла трикарбоновых кислот, или цикла Кребса (по имени исследователя, установившего этот цикл).

Начальной реакцией цикла Кребса является конденсация щавелево-уксусной кислоты с активированной формой уксусной кислоты (ацетата), которая представляет собой соединение с коферментом ацетилирования — ацетил-КоА. В результате реакции образуется лимонная кислота, которая после четырехкратной дегидрогенизации (отщепление от молекулы 2 атомов водорода) и двукратного декарбоксилирования (отщепление молекулы CO2) образует щавелевоуксусную кислоту. Источниками ацетил-КоА, использующегося в цикле Кребса, являются уксусная кислота, пировиноградная кислота — один из продуктов гликолиза (см.), жирные кислоты (см.) и пр. Наряду с окислением ацетил-КоА в цикле Кребса могут подвергаться окислению и другие вещества, способные превращаться в промежуточные продукты этого цикла, например многие из аминокислот, образующиеся при распаде белка. Ввиду обратимости большинства реакций цикла Кребса продукты распада белков, жиров и углеводов (интермедиаты) в нем могут не только окисляться, но и получаться при его обращении. Так осуществляется связь между обменом жиров, белков и углеводов.

Протекающие в цикле Кребса реакции окисления не сопровождаются, как правило, образованием богатых энергией соединений. Исключение представляет превращение сукцинил-КоА в сукцинат (см. Янтарная кислота), которое сопровождается образованием гуанозинтрифосфата. Большая часть АТФ образуется в цепи дыхательных ферментов (см.), где перенос электронов (а на первых этапах и протонов) к кислороду сопровождается выделением энергии.

Реакции отщепления водорода осуществляются ферментами класса дегидрогеназ, причем атомы водорода (т. е. протоны + электроны) присоединяются к коферментам: никотинамидадениндинуклеотиду (НАД), никотинамидадениндинуклеотид-фосфату (НАДФ), флавинадениндинуклеотиду (ФАД) и др.

Процессы биологического окисления, связанные с циклом Кребса и цепью дыхательных ферментов, протекают преимущественно в митохондриях и локализованы на их мембранах.

Таким образом, процессы биологического окисления, связанные с циклом Кребса, имеют значение как при образовании соединений, богатых энергией, так и для осуществления связи углеводного, жирового и белкового обмена. Другие виды биологического окисления, по-видимому, имеют более узкое значение, например энергообеспечение клеток. Такова стадия гликолиза, заключающаяся в окислении ряда фосфорных соединений с одновременным восстановлением НАД и образованием АТФ или реакции пентозного цикла (т. е. окислительного превращения глюкозо-6-фосфата), сопровождающихся образованием фосфопентоз и восстановленного НАДФ. Пентозный цикл играет важную роль в тканях, характеризующихся интенсивно протекающими синтезами — нуклеиновых, жирных кислот, холестерина и пр. См. также Обмен веществ и энергии.

Окисление биологическое — совокупность окислительно-восстановительных реакций, протекающих в биологических объектах. Под процессом окисления понимают потерю веществом электронов или электронов и протонов одновременно (потерю водородных атомов) или присоединение кислорода. Реакции противоположного направления характеризуют процесс восстановления. Восстановителями называют вещества, теряющие электроны, окислителями — вещества, приобретающие электроны. Окисление биологическое составляет основу тканевого, или клеточного, дыхания (процесса, в результате которого ткани и клетки поглощают кислород и выделяют углекислый газ и воду) — главного источника энергии для организма. Веществом, принимающим (акцептирующим) электроны, т. е. восстанавливающимся, является молекулярный кислород, превращающийся в анион кислорода O——. Водородные атомы, отщепляемые от органического вещества — субстрата окисления (SH2), превращаются при потере электронов в протоны или положительно заряженные катионы водорода:

SH2→S→2H; 2Н→2H+ + 2e: ½O2→О; О→2е→O——; 2H+ + O——→H2O+55 ккал. В результате реакции между катионами водорода и анионами кислорода образуется вода, а реакция сопровождается выделением значительного количества энергии на каждые 18 г воды). В качестве побочного продукта биологического окисления образуется углекислый газ. Некоторые из реакций О. б. приводят к образованию перекиси водорода, под влиянием каталазы распадающейся на H2O и O2.

Поставщиками энергии в организме человека служат продукты питания — белки, жиры и углеводы. Однако эти вещества не могут служить субстратами О. б. Они предварительно подвергаются расщеплению в пищеварительном тракте, где из белков образуются аминокислоты, из жиров — жирные кислоты и глицерин, из сложных углеводов — моносахариды, в первую очередь гексозы. Все эти соединения всасываются и поступают (прямо или через лимфатическую систему) в кровь. Вместе с аналогичными веществами, образованными в органах и тканях, они составляют «метаболический фонд», из которого организм черпает материал для биосинтезов и для удовлетворения энергетических запросов. Главными субстратами О. б. являются продукты тканевого обмена аминокислот, углеводов и жиров, получившие название веществ «лимоннокислого цикла». К ним относятся кислоты:

лимонная, цисаконитовая, изолимонная, щавелевоянтарная, α-кетоглютаровая, янтарная, фумаровая, яблочная, щавелевоуксусная.

Пировиноградная кислота СН3—СО—СООН не входит непосредственно в лимоннокислый цикл, но играет в нем существенную роль, как и продукт ее декарбоксилирования — активная форма уксусной кислоты СН3СОКоА (ацетил-коэнзим А).

Процессы, входящие в «лимоннокислый цикл» («цикл Кребса», «цикл трикарбоновых кислот»), протекают под действием ферментов, заключенных в клеточных органеллах, называемых митохондриями. Элементарный акт окисления любого вещества, входящего в лимоннокислый цикл,— это отнятие от этого вещества водорода, т. е. акт дегидрогенизации, обусловленный активностью соответствующего специфически действующего фермента дегидрогеназы (рис. 1).

Рис. 1. Схема лимоннокислого цикла Кребса.

Если процесс начинается с пировиноградной кислоты, то отщепление двух атомов водорода (2Н) в цикле Кребса повторяется 5 раз и сопровождается тремя последовательными этапами декарбоксилирования. Первый акт — дегидрогенизация — происходит при превращении пировиноградной кислоты в ацетил-КоА, конденсирующийся с щавелевоуксусной кислотой в лимонную. Второй раз дегидрогенизация приводит к образованию щавелевоянтарной кислоты из изолимонной. Третий акт — отщепление двух атомов водорода — связан с превращением кетоглютаровой кислоты в сукцинил-КоА; четвертый — с дегидрогенизацией янтарной кислоты и, наконец, пятый — с превращением яблочной кислоты в щавелевоуксусную, которая вновь может вступить в конденсацию с ацетил-КоА и обеспечить образование лимонной кислоты. При распаде сукцинил-КоА образуется богатая энергией связь (~Р) — это так называемое субстратное фосфорилирование: Сукцинил-КоА + Н3РО4 + АДФ  → янтарная кислота + КоА + АТФ.

Рис. 2. Схема дегидрогенизации субстратов лимоннокислого цикла специфическими ферментами, состоящими из диссоциирующих комплексов: белков — б1, б2, б3 и б4 с НАД и НАДН2 и белка б5, образующего комплекс с ФАД (сукциндегидрогеназу); ЦАК — цисаконитовая кислота.

Четыре из названных актов дегидрогенизации осуществляются при участии специфических дегидрогеназ, коферментом которых является никотинамидадениндинуклеотид (НАД). Один акт — превращение янтарной кислоты в фумаровую — происходит под влиянием сукциндегидрогеназы — флавопротеида I. В данном случае коферментом является флавинадениндинуклеотид (ФАД). В результате пяти повторных актов дегидрогенизации (рис. 2) при реакциях, происходящих в лимоннокислом цикле, образуются восстановленные формы коферментов: 4-НАДН2 1-ФАДН2. Дегидрогеназа восстановленного НАД, т. е. принимающая водород с НАДН2, принадлежит также к флавиновым ферментам — это флавопротеид II. Однако он отличается от сукциндегидрогеназы структурой как белка, так и флавинового компонента. Дальнейшее окисление восстановленных форм флавопротеидов I и II, содержащих ФАДН2, происходит при участии цитохромов (см.), представляющих собой сложные белки — хромопротеиды, содержащие в своем составе железопорфирины — гемы.

При окислении ФАДН2 пути протона и электронов расходятся: протоны поступают в окружающую среду в виде ионов водорода, а электроны через серию цитохромов (рис.3) передаются на кислород, превращая его в анион кислорода O—— . Между ФАДН2 и системой цитохромов, по-видимому, участвует еще один фактор — коэнзим Q. Каждое следующее звено в дыхательной цепи от НАДН2 до кислорода характеризуется более высоким окислительно-восстановительным потенциалом (см.). На протяжении всей дыхательной цепи от НАДН2 до  ½O2 потенциал меняется на 1,1 в (от -0,29в до+0,81в). При полном окислении, например пировиноградной кислоты, сопровождающемся пятикратным отщеплением водорода, энергетическая эффективность процесса составит около 275 ккал (55X5). Эта энергия не рассеивается полностью в виде тепла; примерно 50% ее аккумулируется в виде богатых энергией

фосфорных соединений, главным образом аденозинтрифосфата (АТФ).

Процесс трансформации энергии окисления в богатые энергией связи (~Р) конечного фосфатного остатка молекулы АТФ локализован во внутренних митохондриальных мембранах и связан с определенными этапами переноса водорода и электронов по дыхательной цепи (рис. 4). Принято считать, что первое фосфорилирование связано с транспортом водорода от НАДН2 к ФАД, второе сопряжено с переносом электронов на цитохром c1 и, наконец, третье, менее всего изученное, расположено между цитохромами c и a.

Механизм образования богатых энергией связей еще не расшифрован. Выяснено, однако, что процесс складывается из нескольких промежуточных реакций (на рис. 4— от J~X  до АТФ), лишь последней из которых является образование богатого энергией фосфатного остатка АТФ. Богатая энергией связь конечной фосфатной группы в АТФ оценивается в 8,5 ккал на грамм-молекулу (в физиологических условиях — около 10 ккал). При переносе водорода и электронов по дыхательной цепи, начиная с НАДН2 и кончая образованием воды, освобождается 55 ккал и аккумулируется в виде АТФ не менее 25,5 ккал (8,5X3). Следовательно, энергетическая эффективность процесса биологического окисления составляет около 50%.

Рис. 3. Схема передачи водорода и электронов по дыхательной цепи; Е0 — окислительно-восстановительный потенциал.

Рис. 5. Схема использования энергии фосфатных связей АТФ (АМФ—Р~Р) для различных физиологических функций.

Биологический смысл фосфорилирующего окисления понятен (рис. 5): все процессы жизнедеятельности (мышечная работа, нервная деятельность, биосинтезы) требуют затраты энергии, края обеспечивается разрывом богатых энергией фосфатных связей (~Р). Биологический смысл нефосфорилирующего — свободного — окисления можно видеть в многочисленных реакциях окисления, не связанных с лимоннокислым циклом и переносом водорода и электронов по дыхательной цепи. Сюда относятся, например, все внемитохондриальные процессы окисления, окислительное удаление токсически действующих веществ и многие акты регуляции количественного содержания биологически активных соединений (некоторых аминокислот, биогенных аминов, адреналина, гистидина, серотонина и т. д., альдегидов и пр.) путем более или менее интенсивного их окисления. Соотношение свободного и фосфорилирующего окисления является также одним из путей терморегуляции у человека и теплокровных животных. См. также Обмен веществ и энергии.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины